
IEEE SENSORS JOURNAL, VOL. 21, NO. 4, FEBRUARY 15, 2021 4827

Sensor-Fault Detection, Isolation and
Accommodation for Digital Twins via

Modular Data-Driven Architecture
Hossein Darvishi , Graduate Student Member, IEEE, Domenico Ciuonzo , Senior Member, IEEE,

Eivind Rosón Eide, and Pierluigi Salvo Rossi , Senior Member, IEEE

Abstract—Sensor technologies empower Industry 4.0 by
enabling integration of in-field and real-time raw data into
digital twins. However, sensors might be unreliable due to
inherent issues and/or environmental conditions. This article
aims at detecting anomalies in measurements from sensors,
identifying the faulty ones and accommodating them with
appropriate estimated data, thus paving the way to reliable
digital twins. More specifically,we propose a general machine-
learning-based architecture for sensor validation built upon a
series of neural-network estimators and a classifier. Estima-
tors correspond to virtual sensors of all unreliable sensors (to
reconstruct normal behaviour and replace the isolated faulty
sensor within the system), whereas the classifier is used for
detection and isolation tasks. A comprehensive statistical analysis on three different real-world data-sets is conducted
and the performance of the proposed architecture validated under hard and soft synthetically-generated faults.

Index Terms— Digital twin, fault tolerance, Industry 4.0, Internet of Things, machine learning, sensor validation.

I. INTRODUCTION

INDUSTRY 4.0 identifies the current fourth industrial rev-
olution, whose aim is an increased level of automation

through the effective combination of the Internet of Things
(IoT), cyber-physical systems and cloud computing technolo-
gies [2]. Within this concept, sensors play a crucial role by
measuring different physical parameters, thus enabling moni-
toring, controlling and decision-support capabilities [3]. While
systems are highly dependent on data collected by sensors,
the latter are unfortunately prone to errors. These errors can
occur because of several reasons such as a harsh working
environment, low battery level, limited life span (aging),
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improper calibration and hardware failures [4]. Corrupted
data from sensors with failures may negatively affect both
simple and more advanced functionalities of the system
and result in overall system performance degradation and
increased risk level. This would lead to consequences ranging
from financial losses to serious safety issues (including life
losses).

Reliable sensor measurements are vital for effective con-
trol and action-taking chain, and early reaction to faulty
scenarios plays a critical role in risk management strate-
gies while increasing safety and reliability. More specifi-
cally, a properly-working system should be able to perform:
(i) detection (promptly detecting a fault condition within
the system); (ii) isolation (identifying the faulty sensor) and
(iii) accommodation (replacing the faulty data with some
other trusted data). Accordingly, in this article we propose a
machine-learning-based framework for sensor validation. This
framework allows developing a general sensor-fault detection,
isolation, and accommodation (SFDIA) scheme to be easily
adapted to different application domains, e.g. renewables in
maritime scenarios [5]. In detail, the contributions of this
article are:

1) A novel machine-learning-based architecture for SFDIA
is proposed. The proposed architecture jointly takes
advantage of the temporal correlation of the mea-
surements and of both reliable and unreliable sensors
within the system to achieve a higher sensor validation
performance.
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2) The focus of generated faults is on weak faults, which
are very hard to detect and usually ignored in the
literature [6]–[10].

3) The performance of the proposed approach (in terms
of probabilities of detection, false alarm, correct
classification, misclassification, etc.) is evaluated on
three different real-world data-sets [11]–[13] corrupted
with synthetically-generated sensor faults (bias
and drifts) and compared with two state-of-the-art
techniques [14], [15]. The data-sets considered are
publicly-available: this fosters reproducibility and fur-
ther advances on the topic. Synthetically-generated sen-
sor faults have been considered to perform a systematic
performance assessment of the proposed architecture.

4) The impact of different hyperparameters, such as the
number of layers and the number of nodes per layer,
is assessed for the considered scenarios.

The rest of this article is organized as follows. Sec. II pro-
vides a literature review regarding the related work. In Sec. III
we introduce the proposed general SFDIA architecture and
describe the different blocks for fault detection, isolation
and accommodation. Then, in Sec. IV, we present the data
description, contamination and pre-processing related to three
independent data-sets with different applications. Accordingly,
Sec. V highlights and compares the numerical performance for
all the data-sets with different setups.

Finally, in Sec. VI we provide some concluding remarks
and highlight future directions of research.

Notation: Lower-case bold letters denote vectors, (·)T is the
transpose operator, and O(·) indicates the Landau notation.

II. RELATED WORKS

First practices for sensor validation were based on hardware
redundancy [16]. These approaches used multiple sensors to
measure the same parameter at the same point as well as a vot-
ing scheme to compensate sensors faults [16], [17]. However,
hardware redundancy is unable to handle system noise and has
some other serious drawbacks in terms of cost, weight, power
consumption and size. Even more importantly, it is sensitive
to simultaneous failure of all redundant sensors subject to
the same harsh environmental conditions. Due to these rea-
sons, alternative approaches based on analytical redundancy
have gained more attention. Analytical-redundancy approaches
attempt to develop reliable virtual sensors based on system
model(s). More specifically, measurements collected by real
sensors are compared with the values from the virtual ones
to detect presence of faults and provide reliable measure-
ments for replacement [9], [15], [18]. Various model-based
and model-free (viz. data-driven) algorithms such as Kalman
filter (KF) [19], [20], hidden Markov model [21], artificial
neural networks (NN) [7], [22], and support vector machine
(SVM) [14] have focused on detection and isolation tasks
with application on aircraft sensor technologies, cyber-physical
systems and wireless sensor networks (WSNs).

Early KF-based algorithms for detection and isolation were
developed with an inherited drawback of being unable to deal
with non-linearities [19]. Extended KF and multiple hybrid

KFs were shown to overcome this issue through linearization
around the state estimate and piece-wise linear models, respec-
tively [20], [23]. Nevertheless, such solutions were heavily
dependent on domain knowledge about the system which is
not necessarily available.

As for data-driven approaches, multi-layer perceptron
(MLP) architectures were considered for reducing probabil-
ities of false alarm and miss detection through time-variant
thresholds-based tests [22]. A method based on the SVM
classifier was also proposed to detect faults through abnormal
behaviors in the last three data measurements [14]. However,
this method makes decision using redirected data to the
server which results in delayed fault detection. Since the
SVM classifier was only able to classify the faulty data,
a deep belief network [7] coupled with a maximum squared
error method for fault detection and isolation purposes was
investigated. To address large data requirement of data-driven
approaches, fault detection and isolation filters were derived
in the state-space representation form by estimating system
impulse response coefficients in the frequency domain via fast
Fourier transform of input/output signals [24].

In the context of industrial WSNs, a threshold-free error
detection (TED) method was developed [25]. TED relies on
both temporal and spatial correlation between sensor readings.
Recently, a method named TPE-FTED [10] based on an
adjustable step window was proposed for online learning
the changes of sensor readings in a dynamic environment.
TPE-FTED deals with fault detection and isolation problem as
a trajectory pattern extraction problem extracted from different
sensing states. Then, TPE-FTED starts pattern matching as
well as spatial-temporal constraint violation checking to detect
the faulty sensor.

In summary, model-based algorithms require good knowl-
edge of system model/ parameters and are difficult to imple-
ment in presence of nonlinearities. Conversely, data-driven
algorithms may represent a valid alternative to analytical
model-based algorithms: ease of implementation and capabili-
ties to capture non-linear behavior by learning from historical
data have increased attention toward data-driven algorithms
for SFDIA schemes [8], [9], [15], [26]–[28].

An SFDIA scheme based on MLPs by consociating one
main NN and a set of decentralized NNs has been proposed
to create a system for detecting failures of gyro sensors of
an aircraft [26]. Previous-time measurements of sensors under
estimation were also used as the input of MLP NNs. A mini-
mal radial basis function (MRAN) NN presented in [27] was
able to reduce NN complexity by ignoring hidden neurons with
less effect on the NN output. This algorithm was relatively
slow in detecting faults after the occurrence of the faults. The
performance of MLP and Extended MRAN NNs on sensor
failure accommodation scheme were evaluated and compared
through a study for failure on air data system [28]. This study
showed similar performance of both NNs as online estimators,
with slightly better performance of MLP NN in the training
phase. SFDIA scheme presented in [15] employed a fully
connected cascade (FCC) NN with only one neuron per layer
connected to all previous layers. The proposed FCC NN was
able to perform efficiently with a limited number of neurons
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Fig. 1. Block diagram of the SFDIA system.

and reduced computational complexity in comparison to MLP
NN.

A NN-based sensor validation scheme for heavy-duty diesel
engines was proposed using two banks of NN approximators
to generate a residual signal for isolating faults and to produce
an approximation of faulty sensor measurements [9]. A hybrid
structure constructed of adaptive linear (ADALINE) NN for
linear dominant operating conditions as well as MRAN NN
for non-linear dominant operating conditions were considered
to decrease complexity and computational load. However,
the proposed scheme is still slow in detecting faults and
requires a high number of neurons to approximate sensor
output. In [8], the SFDIA approach based on artificial hydro-
carbon networks (AHN) over WSN was presented. AHN is
exploited to predict the temperature and detect the faulty
sensor using in-field sensors and comparing it with information
from a web service.

A distributed spike fault detection method was presented for
linear time-invariant systems based on online learned pair-wise
relationships of sensors using auto-regressive with exogenous
input time-series model [29]. Another method utilized a sea-
sonal auto-regressive integrated moving average models for
forecasting surface temperature variation of concrete sewer
pipes [6]. Predicted values were used as a reference measure
for fault detection and replacement for faulty data. However,

the presence of faults and anomalies reduces the forecasting
performance of this method as it relies on previous measure-
ments of the faulty sensor.

III. SYSTEM ARCHITECTURE FOR SFDIA SCHEME

In the proposed SFDIA scheme, sensors are split into
two groups: the unreliable set SU with NU sensors that are
prone to failures, and the reliable set SR with NR reliable
sensors. Indeed, in some applications some sensors could be
more reliable because of sensor quality, hardware redundancy,
proper design and working environment, being at middle of
life time [30], or some other forms of protection in higher
architectural layers. The proposed SFDIA algorithm can also
handle the case of SR being the empty set (NR = 0). The
objective is to detect, identify and accommodate failure of
faulty sensors among the unreliable set whenever they happen.
In the following, xs[n] denotes the measurement from the
generic sth sensor at time instant n. Without loss of generality,
we number sensors 1 to NU those belonging to the unreliable
set, and NU +1 to NU + NR those belonging to the reliable set,
then we denote xU,s[n] and xR[n] the vectors collecting the
measurements from the unreliable sensors with sth sensor
excluded and from the reliable sensors, respectively, at time
instant n.
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The block diagram of the proposed SFDIA scheme is
shown in Fig. 1, where similar blocks and similar data are
reported in the same color. The input to the system is the set
of measurements from all sensors. The system is based on
three stages: (i ) the first stage is made of NU virtual sensors
(representing estimation of unreliable sensors); (i i ) the second
stage is made of NU analogous residual-computation units;
and (i i i ) the third stage is made of a (multi-task) classifier.
The classifier at the third stage is performing detection and
isolation, while accommodation is done by exploiting the
estimators’ output.

More specifically, at the first stage, the virtual sensor s ∈ SU
receives as input the measurements from all sensors excluding
sensor s (i.e. (SU ∪SR −{s}) for time instant n and Lv previous
time instants (i.e. a sliding window), and produces as output
an estimate of the measurement of sensor s ∈ SU, whose nth
sample is denoted ys[n].

Then, at the second stage, the residual-computation unit
s ∈ SU receives as input the measurement xs[n] of sensor
s ∈ SU and the corresponding estimate ys[n] from the
virtual sensor s ∈ SU and produces as output a measure of
dissimilarity of the pair, whose nth sample is denoted es[n].
Residual measurements are reflecting inconsistencies between
the normal and faulty sensor operating status of unreliable
sensors.

At the third stage, the classifier receives as input the dis-
similarity measures from all the sensor pairs in the unreliable
set SU for time instant n and Lc previous time instants, and
produces as output a decision vector about if and which sensor
has undergone a failure. According to Fig. 1, the nth (soft-)
decision vector is denoted d[n] = (d1[n], d2[n], . . . , dNU[n])T

where di [n] ∈ [0, 1], i = 1, . . . , NU denotes the probability
of the i th sensor (corresponds to a specified unreliable sensor)
being faulty. Ideally, a vector d[n] with all elements set to 0
denotes the event that no sensor has been declared in failure,
while the set of unreliable sensors SU is mapped bijectively
into the first NU positive integers with an arbitrary labeling
function. The final decision is made based on whether the
maximum element of vector d[n] exceeds a given threshold γ .
Nonetheless, the proposed SFDIA architecture (cf. Fig. 1),
can detect, isolate and accommodate more than one sensor
simultaneously. In this case, SFDIA scheme would present
better performance for large scale systems. However this issue
falls beyond the scope of this article and will be explored in
future works.

It is implicitly assumed that in the case that sensor
s ∈ SU is declared in failure, its measurement xs[n] is
replaced with the estimate ys[n] from the corresponding vir-
tual sensor. It is apparent how the considered architecture
implements all the tasks of a SFDIA system: i.e. decision
vector d[n] with an over threshold element represents the
detection task; after a fault is detected, the specific sensor
index i corresponding to the maximum element di [n] of
the decision vector performs the isolation task and replacing
xs[n] with ys[n] employs the accommodation task, with the
sensor s identified through the inverse labeling function.
In what follows, we detail each of three aforementioned
stages.

1) Virtual Sensor: An MLP NN, with (Lv+1)(NU+ NR −1)
inputs, 1 output, and Hv hidden layers, each with Nv hidden
nodes, has been considered for the implementation of the
generic virtual sensor, i.e.

ys[n] = f (Hv,Nv)
s (xU, s[n], . . . , xU,s[n − Lv],

xR[n], . . . , xR[n − Lv]), (1)

where fs represents the MLP-based function model of the
sth sensor. Each MLP has been trained using the Nesterov-
accelerated adaptive moment estimation (Nadam) optimization
algorithm using real-world data-sets [31], [32]. The Nadam
algorithm takes advantage of properties of adaptive moment
estimation (Adam) algorithm and incorporates Nesterov Accel-
erated Gradients to Adam. Hyperbolic tangent (tanh) and
identity activation functions are employed in hidden layers
and the output layer, respectively. Mean square error (MSE)
loss function is used for loss calculation in training phase.

The MLP is a simple architecture with proved perfor-
mance of estimating nonlinear behavior [26], [28]. Numerical
results show the excellent performance of MLP architecture.
However, in the case of further requirement of extrapolating
long-term impact of the temporal dimension for time series
data-sets, more complicated architectures (e.g. convolutional
neural networks, recurrent neural networks (RNNs) and long
short term memory networks (LSTMs) [33], [34]) are expected
to present more appropriate results for the implementation
of each virtual sensor. Data description, data pre-processing
(in order to make it suitable for model training) and data
contamination procedure (via synthetically-generated faults)
are described in the next section.

2) Residual Computation: For dissimilarity measure,
we simply considered the error between the estimated value
and the actual value, i.e.

es[n] = ys[n] − xs[n]. (2)

In fault-free condition, it is expected that the residual mea-
surements es[n] be equal to zero, but in practice, it always
contains non-zero value due to noise and imperfect estimation
of sensor output. Hence, the classifier is introduced to discrim-
inate faulty measurements from non-faulty measurements via
pattern analysis of residual signals.

3) Classifier: An MLP NN, with NU inputs, NU discrete
output, and Hc hidden layer with Nc hidden nodes, has been
considered for the implementation of the classifier, i.e.

d[n] = g(Hc,Nc)(eU[n], . . . , eU[n − Lc]). (3)

where eU[n] is a vector of the dissimilarity measurements of
the unreliable set at time instant n. Since there is a certain level
of correlation between temporal samples of residual signals,
Lc previous time instants are also fed to the classifier to exploit
the temporal correlation among measurements.

The binary cross-entropy loss function along with the same
optimization algorithm (Nadam) and activation function (tanh)
for hidden layers as in the virtual sensors are employed in the
classifier. Moreover, NU sigmoid activation function is used at
the output layer of the classifier. The fault-signal generation
is described in the next section.
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TABLE I
COMPUTATIONAL COMPLEXITY OF THE MLPS CONSTITUTING

THE PROPOSED SFDIA ARCHITECTURE

ComputationalComplexity: The computational complexity of
the proposed SFDIA structure is calculated hereunder in terms
of the big-O notation for one input sample. The computational
complexity for each layer of the virtual sensor and classifier
is specified in Tab. I.

It is worth noticing that in Tab. I, the impact of tanh and
sigmoid operations for virtual sensors and the classifier has
been neglected. Finally, with respect to the computational
complexity of both MLPs and assuming equal number of
hidden layers (Hv = Hc = H ), nodes per hidden layer
(Nv = Nc = N) and time delays (Lv = Lc = L), the com-
putational complexity involved with the proposed architecture
is approximately O(L N2

U N + L NR NU N + H NU N2). Thus,
the proposed architecture has polynomial complexity, and the
complexity grows quadratically as a function of the number
of nodes per layer (N) and number of unreliable sensors (NU).

IV. DATA DESCRIPTION, PRE-PROCESSING, AND

CONTAMINATION

A. Data Description

Three real-world data-sets are applied to the proposed
SFDIA system to evaluate the qualification of the system in
different scenarios.

1) Air Quality (AQ) Data-Set: The first data-set contains
hourly-averaged measurements of an array of 5 metal oxide
chemical sensors embedded in a gas multi-sensor device
deployed on the field in an Italian city along with gas
concentrations references from a certified analyzer [11]. The
device was located in a polluted area, at road level of the city.
AQ data-set was recorded during Mar. 2004-Feb. 2005.

Measurements contain carbon monoxide (CO), non-metanic
hydrocarbons (NMH), nitrogen oxides (NOx), nitrogen diox-
ide (NO2) and ozone (O3) gas concentrations, as well as
measurements of temperature and humidity. For our analysis,
the ground truth hourly-averaged concentrations provided by
a co-located reference certified analyzer along with absolute
humidity are ignored. Accordingly, in our numerical analysis,
the five gas sensors are considered as the unreliable set (NU =
5), whereas temperature and relative humidity are considered
as the reliable set (NR = 2).

2) Wireless Sensor Network (WSN) Data-Set: The second
data-set used in our evaluation has been collected at the
University of North Carolina at Greensboro [12]. A labeled

data-set collected from a single-hop and a multi-hop WSN
using TelosB motes. The data-set consists of 4 sensors located
indoor and outdoor measuring humidity and temperature.
Measurements were collected during 6 hours at 5 seconds
interval. Anomalies indicated with label "1" in the original
data-set were introduced to two sensors by using a water kettle
which increased the temperature and humidity.

In what follows, only the multi-hop data-set with 4 tem-
perature (T1 to T4) measurements is used as unreliable set
(NU = 4), and data with the indicated label "1" were ignored
from this data-set. No reliable set is considered for this data-set
(NR = 0).

3) Permanent Magnet Synchronous Motor (PMSM) Data-Set:
The third data-set comprises several sensor data measurements
from a permanent magnet synchronous motor collected by the
LEA department at Paderborn University [13], [35]. Data-set
measurements include ambient temperature, coolant temper-
ature (CT), voltage q and d components, current q and d
components, motor speed (MS), torque (TRQ), rotor temper-
ature, stator yoke temperature, stator tooth temperature, and
stator winding temperature. Original measurements contain 52
sessions, with each session being 1 ∼ 6h long and sampled at
intervals of 0.5 seconds.

We have considered a sample interval of 15 seconds (by
down-sampling) and ignored the ambient and rotor measure-
ments. Summation of q and d components of voltage and
current are treated as final voltage (V) and current (C) mea-
surements. The reliable set consists of 3 stator temperatures
(NR = 3), and other remaining measurements form the
unreliable set (NU = 5).

B. Pre-Processing

As commonly done in machine-learning applications,
in order to avoid polarization in the training due to different
ranges of different variables, measurements of each sensor
have been normalized such to span the range [0, 1] via
min-max scaling

x �
s[n] = xs[n] − xmin

xmax − xmin
, (4)

where x �
s[n] represents the normalized measurements of the

sth sensor, whereas xmax and xmin are the minimum and
maximum of the training set for given sensor measurements.
It is worth mentioning, in the normalization process, xmax and
xmin are derived based on the training set of each data-set
to present the real-world condition. Besides normalization,
entire rows with missed data in data-sets are omitted. No other
pre-processing has been considered, such as feature extraction,
to help the learning procedure of the virtual sensors. Although,
for noisy data-sets, smoothing techniques (e.g. moving aver-
age, Savitzky-Golay filter or quadratic regression) or low-pass
filtering can be performed allowing the important patterns of
data to stand out.

In proposed architecture, instead of using all sensor except
the one under estimation as input of each virtual sensor, only
the most correlated sensors could be considered as input. This
would help containing complexity, specially for large-scale
systems, while ensuring acceptable performance. Correlation
matrix of all sensors could be obtained from the training set.
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However, this issue is beyond the scope of this article and will
not be here investigated. Architectures with different number
of hidden layers has been compared in order to verify if a deep
architecture can overcome the need for feature extraction for
the specific problem.

C. Data Contamination

In order to build data-sets including sensor failures for
training the SFDIA classifier and testing its performance,
synthetic fault signals have been generated and injected to all
three data-sets. Failure of a sensor could manifest in several
ways [36]–[38]. The most common fault models are bias,
drift, freezing and random fault. In this article, without loss
of generality, we considered bias and drift faults to represent
hard and soft failures, respectively. The mathematical model
for each of them is described in what follows.

1) Bias Fault: In this type of failure (also known as step
fault), a constant bias b for M consecutive samples was added
to the sensor measurements, namely

xs[n] =
{

as[n] + νs[n] + b, 0 ≤ n − m < M

as[n] + νs[n], else
(5)

where as[n] is the ideal (without fault) measurement of the
sth sensor and m is the starting time instant of the fault, while
νs[n] denotes the measurement noise. Sensor measurements in
all three data-sets are (naturally) including measurement noise
(i.e. they provide as[n] + νs[n]).

2) Drift Fault: This additive fault happens in M + N consec-
utive samples when sensor output drifts up to the bias level b
with M time instants

xs[n]=

⎧⎪⎪⎨
⎪⎪⎩

as[n]+νs[n]+ b(n−m+1)

M
, 0≤n−m < M

as[n]+νs[n] + b, M ≤n−m < M+N

as[n]+νs[n], else

(6)

where N is the number of consecutive samples that the drift
fault remains at the saturated bias level b. Also, we considered
M > N to stress the effect of the drift.

V. NUMERICAL RESULTS

In this section, performance of the proposed SFDIA archi-
tecture is examined and compared with recent research
works by using the aforementioned real-world data-sets. Each
data-set is divided into three parts. On each data-set, we used
70% of data for training MLPs (training set), 15% for vali-
dating (validation set) and last 15% block of data for testing
purposes (test set). Early stopping method is used to avoid
over-fitting during the training phase [39]. In this method, error
on the validation set is monitored and if after 20 consecutive
epochs validation set error did not improve, the training
process is stopped.

We denote variation domain the size of the range spanned
by a sensor with reference to the training set. Maximum
level b of generated faults is assumed uniformly distributed
between 0.2 and 0.4 (i.e. accounting for 20 to 40 percent
of the corresponding variation domain) to represent weak

TABLE II
VARIATION DOMAIN FOR EACH SENSOR

Fig. 2. Averaged performance of the virtual sensors for different number
of nodes Nv in terms of PDF of the error signals on each data-set.
Different configurations are denoted with Hv × Nv.

fault signals. Positive and negative faults are generated ran-
domly. Uniform distribution of maximum level b assures that
the classifier will not learn on a specific level. Table II reports
the variation domain for each sensor. The variation domain,
which is always less or equal to the true range of each sensor
(e.g. on WSN data-set in Tab. II, maximum variation domain
is 3.72◦C while usually temperature sensors range are around
150◦C or even higher), is used as criterion since the true ranges
were unknown. In addition, to better understand the effect of
fault strength on detection accuracy, strong fault signals with
maximum level b uniformly distributed between 0.6 and 0.9
are considered for comparison with weak fault signals.

A. Virtual Sensors Performance

Virtual sensors with Nv ∈ {5, 10, 15} nodes per hidden
layer and Hv ∈ {1, 2, 3} hidden layers have been trained and
compared. In detail, virtual sensors’ overall performance on
both training and test sets are shown in Figs. 2 and 3 in terms
of PDF of all sensors error signals (eU[n]) in each data-set.

The improvement of the performance with increasing the
number of nodes (Nv) and hidden layers (Hv) is apparent,
but variable for different data-sets. Fig. 2 seems to suggest
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Fig. 3. Averaged performance of the virtual sensors for different number
of hidden layers Hv in terms of PDF of the error signals on each data-set.
Different configurations are denoted with Hv × Nv.

Fig. 4. Averaged performance of the virtual sensors in configuration
1 × 10 for different number of previous time instants Lv in terms of PDF
of the error signals on each data-set.

the improvements with respect to the number of nodes per
layer saturate approximately with Nv, while, as it can be seen
in Fig. 3, adding more layers has only a relevant effect on
the largest data-set (PMSM data-set). It must be said that
deeper network structures require larger data-sets to update
their weights and biases, thus the saturation effect might be
due to the limited amount of available data. Fig. 4 illustrates
the impact of input window size Lv on the virtual sensors per-
formance. By employing delayed samples, the virtual sensors
can exploit the temporal correlation between data samples to
enhance estimation performance. However, the PMSM data-set
has a very limited temporal correlation.

Fig. 5. Averaged performance of the virtual sensors in configuration
1 × 10 and Lv = 10 in terms of 2D PDFs of the estimated and actual
values.

TABLE III
NUMBER OF TRAINABLE PARAMETERS (WEIGHTS AND BIASES)

Performance of the configuration with Hv = 1 hidden
layer, Nv = 10 nodes per hidden layer and Lv = 10 is
considered acceptable, thus in the following, we will refer to
this specific configuration. The 2D-PDF plots of the estimated
and actual values for virtual sensors in configuration 1 × 10
are shown in Fig. 5, both for the training and the test sets. It is
worth noticing that the test set of the WSN data-set exceeds
the defined normalization lower-bound which is the result of
normalization on the training set.

B. Classifier Fault Detection and Classification
Performance

Synthetically-generated faults have been added to unreliable
set of sensors to emulate faulty sensors. Different configura-
tions for the classifier are compared in the following. Table III
lists the number of parameters (weights and biases) to be
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Fig. 6. ROC curves of proposed SFDIA structure for all data-sets under
bias and drift faults.

trained during training phase in the classifier and each virtual
sensor for different configurations.

A classifier with Hc = 2 hidden layers, Nc = 15 nodes per
hidden layer and a memory of Lc = 10 has been trained. In
this configuration, according to Tab. III, a total number of 725
trainable parameters of the classifier are required to be updated
through training phase over AQ and PMSM data-set.1

The probabilities of detection and false-alarm are two
important metrics for evaluating the performance of a detector.
Accordingly, in Fig. 6, fault detection performance is inves-
tigated in terms of both metrics by using the well-known
receiver operating characteristic (ROC) curves (i.e. by varying
the threshold γ ). Results highlight that, although the classifier
is facing weak fault signals, it is still capable to detect
them with a very high probability for negligible false-alarm
probability. Detection probability of bias faults is noticeably
higher than drift faults over different false alarm rates. This is
originally due to the ramp up phase of drift faults which takes
classifier more samples to detect faults. As illustrated in Fig. 6,
WSN data-set has somewhat lower performance in comparison
with the other two data-sets (in case of drift faults). It is mainly
because of very weak fault levels on this data-set according
to its sensors’ variation domains (see Tab. II). Conversely,
detection performance of proposed architecture under strong
faults are significantly higher than the detection performance
under weak faults as shown in Fig. 6, which highlights the
importance of detection and isolation of weak faults.

The detection rate of the classifier with 5 and 15 nodes
per hidden layer is assessed in Fig. 7 in case of drift faults.
It is apparent from both train and test sets that 5 nodes per
hidden layer are not enough for distilling relevant features

1The number of trainable parameters of the classifier is different for WSN
data-set due to different Number of unreliable sensors (NU = 4).

Fig. 7. Detection performance of the classifier for different number of
nodes per hidden layer Nc in terms of ROC on each data-set.

Fig. 8. Detection performance of the classifier in configuration 2×15 for
different number of previous time instants Lc in terms of ROC on each
data-set.

from the data sequences. In general, the accuracy on test set
is lower than the accuracy on train set since the classifier is
optimized for the latter. Figs. 8 and 9 demonstrate the effect
of using time-delayed samples on the classifier in the case of
drift fault. There are certain improvements in detection per-
formance and averaged classification (isolation) performance2

when temporal correlation exists in sensor measurements.

2Averaged classification performance is the average of correct classification
probability on all sensors in data-set. Non-fault occurrence is considered as a
separate class.
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Fig. 9. Averaged classification (isolation) performance of the classifier
in configuration 2 × 15 for different number of previous time instants Lc
in terms of ROC on each data-set.

Fig. 10. Classification ROC curves for AQ data-sets under drift faults.

However, as it can be seen on both Fig. 8.(b) and 9.(b),
the performance slightly reduces with increasing number of
time delays (Lc = 15) due to the negligible temporal corre-
lation between older samples and current sample in the mea-
surements. Besides, in this scenario, increasing the window
size should potentially lead to a performance improvement,
however a larger number of nodes in the hidden layers might
be required to handle properly the increased number of input
nodes. Differently, with a fixed network structure, increas-
ing the window size might in practice saturate the learning
capability.

Figure 10 shows the performance in terms of “multi-class
ROC” for each detected class for AQ data-set under drift faults,

TABLE IV
DETECTION AND CLASSIFICATION ACCURACY

BASED ON YOUDEN’S INDEX

i.e. no failure and sensor-1 to sensor-5 failures. More specif-
ically, each subfigure refers to a specific true sensor fault
and reports the curves of the probability of classification for
each possible fault (including the no-fault scenario represented
with a dashed line) obtained through varying the selected
threshold.3 The probability of correct classification for all
5 sensors reaches ≈ 95%. Also, it is apparent how good
detection and identification results are obtained at the expenses
of reduced misclassification rates. Apart from misclassification
with the none case, the case with NO2 sensor failure being
misclassified as a NMH sensor failure is the most difficult
misclassification case to avoid in AQ data-set. In all data-sets,
the results with bias faults are notably improved in comparison
to those with drift fault.4

There exists several criteria for setting the optimal threshold
value to maximize the probability of detection. In this study
we selected Youden index J , i.e. maximization the vertical
distance between the 45-degree line (equality line) and the
point on the ROC curve [40]

J = max
γ

(Pd − Pf). (7)

where Pd is the probability of detection and Pf is the proba-
bility of false alarm.

Sensors classification performance on test sets of all
data-sets with Youden index criteria are summarized in
Tab. IV. Thresholds in Tab. IV are set by applying Youden
index criteria to ROC curves from training sets. Next, all
recorded probabilities are derived from test sets for obtained
thresholds. On the whole, the achieved accuracy with bias
faults is comparatively higher than drift faults. The best
detection accuracy of 99.9% as well as very good detection

3Plots are not depicted with respect to the selected threshold, but with
respect to the corresponding probability of false alarm. It is worth noticing
that well-known confusion matrices may be obtained from these plots by
selecting a desired point of operation (corresponding to a specific value of
the numerical threshold γ providing the classifier output).

4Classification performance on different sensors of other two data-sets as
well as bias faults are not shown for brevity.
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TABLE V
DETECTION ACCURACY OF THE PROPOSED ARCHITECTURE

COMPARED TO THE SVM CLASSIFIER AND THE FCC
TECHNIQUE ON THE TEST SET

accuracy of 97.3% with the lowest false alarm rate of 0.2%
respectively obtained on PMSM and WSN data-sets under bias
fault condition which shows excellent detection performance
of the proposed SFDIA scheme. Moreover, good classification
performance on most sensors is evident with highest average
correct classification of 91.3%, with MS sensor on PMSM
data-set as the hardest classification case.

C. Performance Comparison

Table V compares the proposed architecture with two state-
of-the-art techniques previously outlined in Sec. II: (i) the
SVM classifier [14] and (ii) the FCC NN [15] with 6 nodes.
The SVM classifier has no control over the probability of
false alarm since it does not have any threshold mechanism.
Hence, to provide a fair comparison, we tuned the threshold
on the proposed architecture and on the FCC technique to
achieve the same probability of false alarm as the SVM
classifier, and compared the probability of detection for all
techniques in Tab. V. Apparently, the detection performance
of the proposed architecture outperforms the SVM technique
for all fault types. The performance gap between these two
techniques in terms of detection accuracy becomes more
evident under weak faults. More specifically, under weak drift
fault for the PMSM data-set, the performance improvement
in fault detection of the proposed architecture over the SVM
technique is approximately 24.2%. The main reason lies in
the fact that the SVM classifier takes raw-sensor data as input
while the proposed architecture exploits the estimations of
each sensor and feeds the residual data as input to the classifier
which contains easy-to-interpret information about faults. The
FCC technique exhibits similar detection performance as the
proposed architecture over AQ and WSN data-sets, while on
the PMSM data-set the proposed architecture turns to be better
performing. In Tab. V, the detection accuracy of the FCC
technique with respect to the corresponding probability of false
alarm was not available for the WSN and AQ data-sets under

Fig. 11. Averaged classification (isolation) performance comparison in
terms of ROC for the test set on each data-set.

Fig. 12. Accommodation performance comparison in terms of PDF of
the error signals on each data-set.

strong bias faults (as can be seen also in Fig. 11(a)). It is worth
mentioning that the detection performance on the training set
resembles those shown for the test set in Tab. V.

As for the isolation task, the proposed architecture achieves
significant gains over the FCC technique as observed in
terms of classification performance shown in Fig. 11. More
specifically, the proposed architecture takes advantage of MLP
classifier while the FCC technique merely uses a sliding win-
dow mechanism. The relevance of the proposed architecture
as an effective SFDIA scheme is apparent.

Finally, as for the accommodation task, Fig. 12 compares
the accuracy of the virtual sensors which reveals better esti-
mation capability of the MLPs from the proposed architecture
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against the FCC NNs. The improvement is mainly due to
the capability of the proposed technique to exploit temporal
correlation. Finally, it is worth noticing that isolation and
accommodation performances of the SVM technique cannot
be compared due to its incapability to classify and estimate
faulty sensors.

VI. CONCLUSION

In this article, we presented a three-stage SFDIA architec-
ture with capability to adapt with different applications. The
classifier at the third stage detects and isolates the faulty sensor
from patterns within the input residual signals. The bank of
estimators at the first stage allows to accommodate unreliable
sensors by replacing the measurements from the identified
faulty sensors. Estimators are also used at the second stage
to derive the residual signals for the classifier. An extensive
evaluation on three real-world data-sets from different appli-
cations indicated that the proposed SFDIA architecture attains
high probability of detection and correct classification with
low probability of false alarm in presence of weak bias and
drift faults.

The same architecture allows large flexibility with the com-
ponents in each layer (e.g. replacing the considered MLPs with
RNNs), thus might achieve further performance improvements
under specific circumstances. In addition, although not inves-
tigated in this work, the proposed architecture is potentially
capable of handling multiple simultaneous faults, a feature to
be considered in future works.
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